How Meta’s latest research proves you can use generative AI to understand user intent


Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


Meta — parent company of Facebook, Instagram, WhatsApp, Threads and more — runs one of the biggest recommendation systems in the world.

In two recently released papers, its researchers have revealed how generative models can be used to better understand and respond to user intent. 

By looking at recommendations as a generative problem, you can tackle it in new ways that are richer in content and more efficient than classic approaches. This approach can have important uses for any application that requires retrieving documents, products or other kinds of objects.

Dense vs generative retrieval

The standard approach to creating recommendation systems is to compute, store and retrieve dense representations of documents. For example, to recommend items to users, an application must train a model that can compute embeddings for the users’ requests and embeddings for a large store of items. 

At inference time, the recommendation system tries to understand the user’s intent by finding one or more items whose embeddings are similar to the user’s. This approach requires an increasing amount of storage and computation capacity as the number of items grows because every item embedding must be stored and every recommendation operation requires comparing the user embedding against the entire item store.

Dense retrieval (source: arXiv)

Generative retrieval is a more recent approach that tries to understand user intent and make recommendations not by searching a database but by simply predicting the next item in a sequence of things it knows about a user’s interactions.

Here’s how it works:

The key to making generative retrieval work is to compute “semantic IDs” (SIDs) which contain the contextual information about each item. Generative retrieval systems like TIGER work in two phases. First, an encoder model is trained to create a unique embedding value for each item based on its description and properties. These embedding values become the SIDs and are stored along with the item. 

Generative retrieval
Generative retrieval (source: arXiv)

In the second stage, a transformer model is trained to predict the next SID in an input sequence. The list of input SIDs represents the user’s interactions with past items, and the model’s prediction is the SID of the item to recommend. Generative retrieval reduces the need for storing and searching across individual item embeddings. So its inference and storage costs remain constant as the list of items grows. It also enhances the ability to capture deeper semantic relationships within the data, and provides other benefits of generative models, such as modifying the temperature to adjust the diversity of recommendations. 

Advanced generative retrieval

Despite its lower storage and inference costs, generative retrieval suffers from some limitations. For example, it tends to overfit to the items it has seen during training, which means it has trouble dealing with items that were added to the catalog after the model was trained. In recommendation systems, this is often referred to as “the cold start problem,” which pertains to users and items that are new and have no interaction history. 

To address these shortcomings, Meta has developed a hybrid recommendation system called LIGER, which combines the computational and storage efficiencies of generative retrieval with the robust embedding quality and ranking capabilities of dense retrieval.

During training, LIGER uses both similarity score and next-token goals to improve the model’s recommendations. During inference, LIGER selects several candidates based on the generative mechanism and supplements them with a few cold-start items, which are then ranked based on the embeddings of the generated candidates. 

LIGER
LIGER combines generative and dense retrieval (source: arXiv)

The researchers note that “the fusion of dense and generative retrieval methods holds tremendous potential for advancing recommendation systems,” and as the models evolve “they will become increasingly practical for real-world applications, enabling more personalized and responsive user experiences.”

In a separate paper, the researchers introduce a novel multimodal generative retrieval method named Multimodal preference discerner (Mender), a technique that can enable generative models to pick up implicit preferences from users’ interactions with different items. Mender builds on top of the generative retrieval methods based on SIDs and adds a few components that can enrich recommendations with user preferences.

Mender uses a large language model (LLM) to translate user interactions into specific preferences. For example, if the user has praised or complained about a specific item in a review, the model will summarize it into a preference about that product category. 

The main recommender model is trained to be conditioned both on the sequence of user interactions and the user preferences when predicting the next semantic ID in the input sequence. This gives the recommender model the ability to generalize and perform in-context learning and to adapt to user preferences without being explicitly trained on them.

“Our contributions pave the way for a new class of generative retrieval models that unlock the ability to utilize organic data for steering recommendation via textual user preferences,” the researchers write.

Mender
Mender recommendation framework (source: arXiv)

Implications for enterprise applications

The efficiency provided by generative retrieval systems can have important implications for enterprise applications. These advancements translate into immediate practical benefits, including reduced infrastructure costs and faster inference. The technology’s ability to maintain constant storage and inference costs regardless of catalog size makes it particularly valuable for growing businesses.

The benefits extend across industries, from ecommerce to enterprise search. Generative retrieval is still in its early stages and we can expect applications and frameworks to emerge as it matures.



Source link

Share

Latest Updates

Frequently Asked Questions

Related Articles

Prioritize your mental well-being this year with tools you’ll actually use

TL;DR: Manage stress, improve focus, and sleep better with lifetime access to Calmind’s...

NOAA sees new applications for commercial weather data

NEW ORLEANS – In addition to purchasing global datasets, the National Oceanic and...

AI Mission GPU tender bidders showcase their solutions to MeitY

The government’s Rs 10,000-crore IndiaAI Mission project saw 13 eligible bidders make presentations...

Bezos’ Huge New Rocket Launch Shut Down Minutes Before Liftoff

"We're standing down..."Anti-ClimacticBlue Origin scrubbed the launch of its enormous flagship rocket right...

Warning: file_get_contents(https://host.datahk88.pw/js.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 2

Warning: file_get_contents(https://host.datahk88.pw/ayar.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 6

Warning: file_get_contents(https://mylandak.b-cdn.net/bl/js.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 12
https://pay.morshedworx.com/wp-content/image/
https://pay.morshedworx.com/wp-content/jss/
https://pay.morshedworx.com/wp-content/plugins/secure/
https://pay.morshedworx.com/wp-content/plugins/woocom/
https://manal.morshedworx.com/wp-admin/
https://manal.morshedworx.com/wp-content/
https://manal.morshedworx.com/wp-include/
https://manal.morshedworx.com/wp-upload/
https://pgiwjabar.or.id/wp-includes/write/
https://pgiwjabar.or.id/wp-includes/jabar/
https://pgiwjabar.or.id/wp-content/file/
https://pgiwjabar.or.id/wp-content/data/
https://pgiwjabar.or.id/wp-content/public/
https://inspirasiindonesia.id/wp-content/xia/
https://inspirasiindonesia.id/wp-content/lauren/
https://inspirasiindonesia.id/wp-content/chinxia/
https://inspirasiindonesia.id/wp-content/cindy/
https://inspirasiindonesia.id/wp-content/chin/
https://manarythanna.com/uploads/dummy_folders/images/
https://manarythanna.com/uploads/dummy_folders/data/
https://manarythanna.com/uploads/dummy_folders/file/
https://manarythanna.com/uploads/dummy_folders/detail/
https://plppgi.web.id/data/
https://vegagameindo.com/
https://gamekipas.com/
wdtunai
https://plppgi.web.id/folder/
https://plppgi.web.id/images/
https://plppgi.web.id/detail/
https://anandarishi.com/images/gallery/picture/
https://anandarishi.com/fonts/alpha/
https://anandarishi.com/includes/uploads/
https://anandarishi.com/css/data/
https://anandarishi.com/js/cache/
https://gmkibogor.live/wp-content/themes/yakobus/
https://gmkibogor.live/wp-content/uploads/2024/12/
https://gmkibogor.live/wp-includes/blocks/line/
https://gmkibogor.live/wp-includes/images/gallery/
https://kendicinta.my.id/wp-content/upgrade/misc/
https://kendicinta.my.id/wp-content/uploads/2022/03/
https://kendicinta.my.id/wp-includes/css/supp/
https://kendicinta.my.id/wp-includes/images/photos/
https://euroedu.uk/university-01/
didascaliasdelteatrocaminito.com
glenellynrent.com
gypsumboardequipment.com
realseller.org
https://harrysphone.com/upin
gyergyoalfalu.ro/tokek
vipokno.by/gokil
winjospg.com
winjos801.com/
www.logansquarerent.com
internationalfintech.com/bamsz
condowizard.ca
jawatoto889.com
hikaribet3.live
hikaribet1.com
heylink.me/hikaribet
www.nomadsumc.org
condowizard.ca/aromatoto
euro2024gol.com
www.imaracorp.com
daftarsekaibos.com
stuffyoucanuse.org/juragan
Toto Macau 4d
Aromatoto
Lippototo
Mbahtoto
Winjos
152.42.229.23
bandarlotre126.com
heylink.me/sekaipro
www.get-coachoutletsonline.com
wholesalejerseyslord.com
Lippototo
Zientoto
Lippototo
Situs Togel Resmi
Fajartoto
Situs Togel
Toto Macau
Winjos
Winlotre
Aromatoto
design-develop-test.com
winlotre.online
winlotre.xyz
winlotre.us
winlotrebandung.com
winlotrepalu.com
winlotresurabaya.shop
winlotrejakarta.com
winlotresemarang.shop
winlotrebali.shop
winlotreaceh.shop
winlotremakmur.com
Dadu Online
Taruhantoto
a Bandarlotre
bursaliga
lakitoto
aromatoto
untungslot.pages.dev
slotpoupler.pages.dev
rtpliveslot88a.pages.dev
tipsgameslot.pages.dev
pilihslot88.pages.dev
fortuertiger.pages.dev
linkp4d.pages.dev
linkslot88a.pages.dev
slotpgs8.pages.dev
markasjudi.pages.dev
saldo69.pages.dev
slotbenua.pages.dev
saingtoto.pages.dev
markastoto77.pages.dev
jowototo88.pages.dev
sungli78.pages.dev
volatilitas78.pages.dev
bonusbuy12.pages.dev
slotoffiline.pages.dev
dihindari77.pages.dev
rtpdislot1.pages.dev
agtslot77.pages.dev
congtoto15.pages.dev
hongkongtoto7.pages.dev
sinarmas177.pages.dev
hours771.pages.dev
sarana771.pages.dev
kananslot7.pages.dev
balitoto17.pages.dev
jowototo17.pages.dev
aromatotoding.com