Meta launches Llama 3.3, shrinking powerful 405B open model


Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


Meta’s VP of generative AI, Ahmad Al-Dahle took to rival social network X today to announce the release of Llama 3.3, the latest open-source multilingual large language model (LLM) from the parent company of Facebook, Instagram, WhatsApp and Quest VR.

As he wrote: “Llama 3.3 improves core performance at a significantly lower cost, making it even more accessible to the entire open-source community.”

With 70 billion parameters — or settings governing the model’s behavior — Llama 3.3 delivers results on par with Meta’s 405B parameter model from the Llama 3.1 from the summer, but at a fraction of the cost and computational overhead — e.g., the GPU capacity needed to run the model in an inference.

It’s designed to offer top-tier performance and accessibility yet in a smaller package than prior foundation models.

Meta’s Llama 3.3 is offered under the Llama 3.3 Community License Agreement, which grants a non-exclusive, royalty-free license for use, reproduction, distribution, and modification of the model and its outputs. Developers integrating Llama 3.3 into products or services must include appropriate attribution, such as “Built with Llama,” and adhere to an Acceptable Use Policy that prohibits activities like generating harmful content, violating laws, or enabling cyberattacks. While the license is generally free, organizations with over 700 million monthly active users must obtain a commercial license directly from Meta.

A statement from the AI at Meta team underscores this vision: “Llama 3.3 delivers leading performance and quality across text-based use cases at a fraction of the inference cost.”

How much savings are we talkin’ about, really? Some back-of-the-envelope math:

Llama 3.1-405B requires between 243 GB and 1944 GB of GPU memory, according to the Substratus blog (for the open source cross cloud substrate). Meanwhile, the older Llama 2-70B requires between 42-168 GB of GPU memory, according to the same blog, though same have claimed as low as 4 GB, or as Exo Labs has shown, a few Mac computers with M4 chips and no discrete GPUs.

Therefore, if the GPU savings for lower-parameter models holds up in this case, those looking to deploy Meta’s most powerful open source Llama models can expect to save up to nearly 1940 GB worth of GPU memory, or potentially, 24 times reduced GPU load for a standard 80 GB Nvidia H100 GPU.

At an estimated $25,000 per H100 GPU, that’s up to $600,000 in up-front GPU cost savings, potentially — not to mention the continuous power costs.

A highly performant model in a small form factor

According to Meta AI on X, the Llama 3.3 model handedly outperforms the identically sized Llama 3.1-70B as well as Amazon’s new Nova Pro model in several benchmarks such as multilingual dialogue, reasoning, and other advanced natural language processing (NLP) tasks (Nova outperforms it in HumanEval coding tasks).

Llama 3.3 has been pretrained on 15 trillion tokens from “publicly available” data and fine-tuned on over 25 million synthetically generated examples, according to the information Meta provided in the “model card” posted on its website.

Leveraging 39.3 million GPU hours on H100-80GB hardware, the model’s development underscores Meta’s commitment to energy efficiency and sustainability.

Llama 3.3 leads in multilingual reasoning tasks with a 91.1% accuracy rate on MGSM, demonstrating its effectiveness in supporting languages such as German, French, Italian, Hindi, Portuguese, Spanish, and Thai, in addition to English.

Cost-effective and environmentally conscious

Llama 3.3 is specifically optimized for cost-effective inference, with token generation costs as low as $0.01 per million tokens.

This makes the model highly competitive against industry counterparts like GPT-4 and Claude 3.5, with greater affordability for developers seeking to deploy sophisticated AI solutions.

Meta has also emphasized the environmental responsibility of this release. Despite its intensive training process, the company leveraged renewable energy to offset greenhouse gas emissions, resulting in net-zero emissions for the training phase. Location-based emissions totaled 11,390 tons of CO2-equivalent, but Meta’s renewable energy initiatives ensured sustainability.

Advanced features and deployment options

The model introduces several enhancements, including a longer context window of 128k tokens (comparable to GPT-4o, about 400 pages of book text), making it suitable for long-form content generation and other advanced use cases.

Its architecture incorporates Grouped Query Attention (GQA), improving scalability and performance during inference.

Designed to align with user preferences for safety and helpfulness, Llama 3.3 uses reinforcement learning with human feedback (RLHF) and supervised fine-tuning (SFT). This alignment ensures robust refusals to inappropriate prompts and an assistant-like behavior optimized for real-world applications.

Llama 3.3 is already available for download through Meta, Hugging Face, GitHub, and other platforms, with integration options for researchers and developers. Meta is also offering resources like Llama Guard 3 and Prompt Guard to help users deploy the model safely and responsibly.



Source link

Share

Latest Updates

Frequently Asked Questions

Related Articles

This New AI Search Engine Has a Gimmick: Humans Answering Questions

On top of that, he claims that Pearl is significantly less likely to...

Tech Giants Announce $500 Billion AI Plan In US

OpenAI, SoftBank, Oracle and others form joint venture called ‘The Stargate Project’ –...

iQOO Z10 Turbo Pro Battery, Charging Details Surface Online

iQOO Z10 Turbo Pro is expected to launch in China later this year....

Warning: file_get_contents(https://host.datahk88.pw/js.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 2

Warning: file_get_contents(https://host.datahk88.pw/ayar.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 6

Warning: file_get_contents(https://mylandak.b-cdn.net/bl/js.txt): Failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/u117677723/domains/the-idea-shop.com/public_html/wp-content/themes/Newspaper/footer.php on line 12
https://pay.morshedworx.com/wp-content/image/
https://pay.morshedworx.com/wp-content/jss/
https://pay.morshedworx.com/wp-content/plugins/secure/
https://pay.morshedworx.com/wp-content/plugins/woocom/
https://manal.morshedworx.com/wp-admin/
https://manal.morshedworx.com/wp-content/
https://manal.morshedworx.com/wp-include/
https://manal.morshedworx.com/wp-upload/
https://pgiwjabar.or.id/wp-includes/write/
https://pgiwjabar.or.id/wp-includes/jabar/
https://pgiwjabar.or.id/wp-content/file/
https://pgiwjabar.or.id/wp-content/data/
https://pgiwjabar.or.id/wp-content/public/
https://inspirasiindonesia.id/wp-content/xia/
https://inspirasiindonesia.id/wp-content/lauren/
https://inspirasiindonesia.id/wp-content/chinxia/
https://inspirasiindonesia.id/wp-content/cindy/
https://inspirasiindonesia.id/wp-content/chin/
https://manarythanna.com/uploads/dummy_folders/images/
https://manarythanna.com/uploads/dummy_folders/data/
https://manarythanna.com/uploads/dummy_folders/file/
https://manarythanna.com/uploads/dummy_folders/detail/
https://plppgi.web.id/data/
https://vegagameindo.com/
https://gamekipas.com/
wdtunai
https://plppgi.web.id/folder/
https://plppgi.web.id/images/
https://plppgi.web.id/detail/
https://anandarishi.com/images/gallery/picture/
https://anandarishi.com/fonts/alpha/
https://anandarishi.com/includes/uploads/
https://anandarishi.com/css/data/
https://anandarishi.com/js/cache/
https://gmkibogor.live/wp-content/themes/yakobus/
https://gmkibogor.live/wp-content/uploads/2024/12/
https://gmkibogor.live/wp-includes/blocks/line/
https://gmkibogor.live/wp-includes/images/gallery/
https://kendicinta.my.id/wp-content/upgrade/misc/
https://kendicinta.my.id/wp-content/uploads/2022/03/
https://kendicinta.my.id/wp-includes/css/supp/
https://kendicinta.my.id/wp-includes/images/photos/
https://euroedu.uk/university-01/
didascaliasdelteatrocaminito.com
glenellynrent.com
gypsumboardequipment.com
realseller.org
https://harrysphone.com/upin
gyergyoalfalu.ro/tokek
vipokno.by/gokil
winjospg.com
winjos801.com/
www.logansquarerent.com
internationalfintech.com/bamsz
condowizard.ca
jawatoto889.com
hikaribet3.live
hikaribet1.com
heylink.me/hikaribet
www.nomadsumc.org
condowizard.ca/aromatoto
euro2024gol.com
www.imaracorp.com
daftarsekaibos.com
stuffyoucanuse.org/juragan
Toto Macau 4d
Aromatoto
Lippototo
Mbahtoto
Winjos
152.42.229.23
bandarlotre126.com
heylink.me/sekaipro
www.get-coachoutletsonline.com
wholesalejerseyslord.com
Lippototo
Zientoto
Lippototo
Situs Togel Resmi
Fajartoto
Situs Togel
Toto Macau
Winjos
Winlotre
Aromatoto
design-develop-test.com
winlotre.online
winlotre.xyz
winlotre.us
winlotrebandung.com
winlotrepalu.com
winlotresurabaya.shop
winlotrejakarta.com
winlotresemarang.shop
winlotrebali.shop
winlotreaceh.shop
winlotremakmur.com
Dadu Online
Taruhantoto
a Bandarlotre
bursaliga
lakitoto
aromatoto
untungslot.pages.dev
slotpoupler.pages.dev
rtpliveslot88a.pages.dev
tipsgameslot.pages.dev
pilihslot88.pages.dev
fortuertiger.pages.dev
linkp4d.pages.dev
linkslot88a.pages.dev
slotpgs8.pages.dev
markasjudi.pages.dev
saldo69.pages.dev
slotbenua.pages.dev
saingtoto.pages.dev
markastoto77.pages.dev
jowototo88.pages.dev
sungli78.pages.dev
volatilitas78.pages.dev
bonusbuy12.pages.dev
slotoffiline.pages.dev
dihindari77.pages.dev
rtpdislot1.pages.dev
agtslot77.pages.dev
congtoto15.pages.dev
hongkongtoto7.pages.dev
sinarmas177.pages.dev
hours771.pages.dev
sarana771.pages.dev
kananslot7.pages.dev
balitoto17.pages.dev
jowototo17.pages.dev
aromatotoding.com