How (and why) federated learning enhances cybersecurity


Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


Each year, cyberattacks become more frequent and data breaches become more expensive. Whether companies seek to protect their AI system during development or use their algorithm to improve their security posture, they must alleviate cybersecurity risks. Federated learning might be able to do both.

What is federated learning?

Federated learning is an approach to AI development in which multiple parties train a single model separately. Each downloads the current primary algorithm from a central cloud server. They train their configuration independently on local servers, uploading it upon completion. This way, they can share data remotely without exposing raw data or model parameters.

The centralized algorithm weighs the number of samples it receives from each disparately trained configuration, aggregating them to create a single global model. All information remains on each participant’s local servers or devices — the centralized repository weighs the updates instead of processing raw data.

Federated learning’s popularity is rapidly increasing because it addresses common development-related security concerns. It is also highly sought after for its performance advantages. Research shows this technique can improve an image classification model’s accuracy by up to 20% — a substantial increase.

Horizontal federated learning

There are two types of federated learning. The conventional option is horizontal federated learning. In this approach, data is partitioned across various devices. The datasets share feature spaces but have different samples. This enables edge nodes to collaboratively train a machine learning (ML) model without sharing information.

Vertical federated learning

In vertical federated learning, the opposite is true — features differ, but samples are the same. Features are distributed vertically across participants, each possessing different attributes about the same set of entities. Since just one party has access to the complete set of sample labels, this approach preserves privacy. 

How federated learning strengthens cybersecurity

Traditional development is prone to security gaps. Although algorithms must have expansive, relevant datasets to maintain accuracy, involving multiple departments or vendors creates openings for threat actors. They can exploit the lack of visibility and broad attack surface to inject bias, conduct prompt engineering or exfiltrate sensitive training data.

When algorithms are deployed in cybersecurity roles, their performance can affect an organization’s security posture. Research shows that model accuracy can suddenly diminish when processing new data. Although AI systems may appear accurate, they may fail when tested elsewhere because they learned to take bogus shortcuts to produce convincing results.

Since AI cannot think critically or genuinely consider context, its accuracy diminishes over time. Even though ML models evolve as they absorb new information, their performance will stagnate if their decision-making skills are based on shortcuts. This is where federated learning comes in.

Other notable benefits of training a centralized model via disparate updates include privacy and security. Since every participant works independently, no one has to share proprietary or sensitive information to progress training. Moreover, the fewer data transfers there are, the lower the risk of a man-in-the-middle attack (MITM).

All updates are encrypted for secure aggregation. Multi-party computation hides them behind various encryption schemes, lowering the chances of a breach or MITM attack. Doing so enhances collaboration while minimizing risk, ultimately improving security posture.

One overlooked advantage of federated learning is speed. It has a much lower latency than its centralized counterpart. Since training happens locally instead of on a central server, the algorithm can detect, classify and respond to threats much faster. Minimal delays and rapid data transmissions enable cybersecurity professionals to handle bad actors with ease.

Considerations for cybersecurity professionals

Before leveraging this training technique, AI engineers and cybersecurity teams should consider several technical, security and operational factors.

Resource usage

AI development is expensive. Teams building their own model should expect to spend anywhere from $5 million to $200 million upfront, and upwards of $5 million annually for upkeep. The financial commitment is significant even with costs spread out among multiple parties. Business leaders should account for cloud and edge computing costs.

Federated learning is also computationally intensive, which may introduce bandwidth, storage space or computing limitations. While the cloud enables on-demand scalability, cybersecurity teams risk vendor lock-in if they are not careful. Strategic hardware and vendor selection is of the utmost importance.

Participant trust

While disparate training is secure, it lacks transparency, making intentional bias and malicious injection a concern. A consensus mechanism is essential for approving model updates before the centralized algorithm aggregates them. This way, they can minimize threat risk without sacrificing confidentiality or exposing sensitive information.

Training data security

While this machine learning training technique can improve a firm’s security posture, there is no such thing as 100% secure. Developing a model in the cloud comes with the risk of insider threats, human error and data loss. Redundancy is key. Teams should create backups to prevent disruption and roll back updates, if necessary. 

Decision-makers should revisit their training datasets’ sources. In ML communities, heavy borrowing of datasets occurs, raising well-founded concerns about model misalignment. On Papers With Code, more than 50% of task communities use borrowed datasets at least 57.8% of the time. Moreover, 50% of the datasets there come from just 12 universities.

Applications of federated learning in cybersecurity

Once the primary algorithm aggregates and weighs participants’ updates, it can be reshared for whatever application it was trained for. Cybersecurity teams can use it for threat detection. The advantage here is twofold — while threat actors are left guessing since they cannot easily exfiltrate data, professionals pool insights for highly accurate output.

Federated learning is ideal for adjacent applications like threat classification or indicator of compromise detection. The AI’s large dataset size and extensive training build its knowledge base, curating expansive expertise. Cybersecurity professionals can use the model as a unified defense mechanism to protect broad attack surfaces.

ML models — especially those that make predictions — are prone to drift over time as concepts evolve or variables become less relevant. With federated learning, teams could periodically update their model with varied features or data samples, resulting in more accurate, timely insights.

Leveraging federated learning for cybersecurity

Whether companies want to secure their training dataset or leverage AI for threat detection, they should consider using federated learning. This technique could improve accuracy and performance and strengthen their security posture as long as they strategically navigate potential insider threats or breach risks.

 Zac Amos is the features editor at ReHack.

DataDecisionMakers

Welcome to the VentureBeat community!

DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.

If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.

You might even consider contributing an article of your own!

Read More From DataDecisionMakers



Source link

Share

Latest Updates

Frequently Asked Questions

Related Articles

Prowatch X With 1.43-Inch AMOLED Screen, IP68 Rating Launched in India

Prowatch X by Lava was launched in India on Saturday, and the company's latest...

IndiaAI Mission: India’s AI race heats up as entrepreneurs, researchers, and startups vie for IndiaAI Mission funding

Stanford graduate Ayush Gupta who quit his job at Apple to start his...

Eutelsat adapts GEO strategy as Starlink reshapes satellite connectivity

TAMPA, Fla. — Eutelsat is taking another step away from consumer broadband as...

Jeep Drivers Bombarded With Ads for Extended Warranty on Their Center Console Displays

The smartphone-ification of cars continues to unleash new horrors of tech-inflected capitalism.Just ask...
SULTAN88
SULTANSLOT
RAJA328
JOIN88
GFC88
HOKIBET
RUSIASLOT88
TAHU69
BONANZA99
PRAGMABET
MEGA55
LUXURY777
LUXURY333
BORJU89
QQGAMING
KEDAI168
MEGA777
NAGASLOT777
TAKSU787
KKSLOT777
MAS77TOTO
bandar55
BOS303
HOKI99
NUSA365
YUHUSLOT
KTP168
GALAXY138
NEXIA138
PETIR33
BOOM138
MEGA888
CABE888
FOSIL777
turbospin138
KAPAKBET
SUPERJP
sultankoin99
dragon88
raffi888
kenzobet
aladin666
rgo365
ubm4d
GERCEP88
VIVA99
CR777
VOXY88
delman567
intan69
CABE888
RNR303
LOGO303
PEMBURUGACOR
mpo383
cermin4d
bm88
ANGKA79
WOWHOKI
ROKET303
MPOXL
GURITA168
SUPRASLOT
SGCWIN
DESA88
ARWANA388
DAUNEMAS
ALADDIN666
BIOWIN69
SKY77
DOTA88
NAGA138
API5000
y200m
PLAYBOOK88
LUXURY12
A200M
MPO700
KENANGAN4D
cakrabola
PANDAGENDUT
MARVEL77
UG300
HOKI178
MONTE77
JASABOLA
UNTAR4D
LIDO88
MAFIABOLA77
GASPOL189
mpo999
untung138
TW88
JAGUAR33
MPOBOS
SHIO88
VIVO4D
MPOXL
JARISAKTI
BBO303
AONCASH
ANGKER4D
LEVIS4D
JAGO88
REPUBLIK365
BOSDEAL88
BOLA168
akunjp
WARTEGBET
EZEBET
88PULSA
KITAB4D
BOSDEAL88
STUDIOBET
MESINKOIN
BIMA88
PPNUSA
ABGBET88
TOP77
BAYAR77
YES77
BBTN4D
BBCA4D
VSLOTS88
MPO800
PAHALA4D
KPI4D
JURAGAN77
QQ188
BOLAPELANGI
C200M
QQ998
GWKTOGEL
MEGABANDAR
COLOWIN
VIP579
SEVEN4D
MPO188
DEWATA88
SURAT4D
SINAR123
LAMBO77
GUDANG4D
AWAN4D
PLANETLIGA
GT88
ROYALSPIN88
MAMAJITU
MITO99
PEDIA4D
WIBU69JP
333HOKI
SIDARMA88
NAGAEMAS99
HOLA88
CAKAR76
KINGTOTO
RATUGAMING
SSI168
PILAR168
ACTOTO
EYANGTOGEL
KAISAR328
SLOT628
KAISAR88
DOTA88
MAXWIN369
ALIBABA99
MM168
SQUAD777
NAGABET88
JAYABOLA
SEMPATIGAME
PANDAJAGO
PIKAT4D
SINGA77
YUYU33
MASTERPLAY99
VICTORY39
NASA4D
PERMATA55
SAKAUSLOT
CK303
MPOTOWER
CIPUTRABET
WINJUDI
DEWI5000
IYA777
MAHIRTOTO
GOSLOT88
TIPTOP4D
RAJA787
JBO680
JOKER188
EPICPLAY88
TRIVABET
KAISAR189
JOKER81
JPSPIN88
MAYORA4D
DJARUMPLAY
OVO88
BAKTI78
WINGSLOT77
ICAFE4D
PDTOTO
JETPLAY88
PORN VIDEO
https://link.space/@Hikaribet
https://bio.site/Hikaribet
https://heylink.me/Hikaribet39
CMBET88
CMBET88
didascaliasdelteatrocaminito.com
glenellynrent.com
gypsumboardequipment.com
realseller.org
https://harrysphone.com/upin
gyergyoalfalu.ro/tokek
vipokno.by/gokil
winjospg.com
winjos801.com/
www.logansquarerent.com
internationalfintech.com/bamsz
condowizard.ca
jawatoto889.com
hikaribet3.live
hikaribet1.com
heylink.me/hikaribet
www.nomadsumc.org
condowizard.ca/aromatoto
euro2024gol.com
www.imaracorp.com
daftarsekaibos.com
stuffyoucanuse.org/juragan
Toto Macau 4d
Aromatoto
Lippototo
Mbahtoto
Winjos
152.42.229.23
bandarlotre126.com
heylink.me/sekaipro
www.get-coachoutletsonline.com
wholesalejerseyslord.com
Lippototo
Zientoto
Lippototo
Situs Togel Resmi
Fajartoto
Situs Togel
Toto Macau
Winjos
Winlotre
Aromatoto
design-develop-test.com
winlotre.online
winlotre.xyz
winlotre.us
winlotrebandung.com
winlotrepalu.com
winlotresurabaya.shop
winlotrejakarta.com
winlotresemarang.shop
winlotrebali.shop
winlotreaceh.shop
winlotremakmur.com
Dadu Online
Taruhantoto
a Bandarlotre
bursaliga
lakitoto
aromatoto
Rebahin
untungslot.pages.dev
slotpoupler.pages.dev
rtpliveslot88a.pages.dev
tipsgameslot.pages.dev
pilihslot88.pages.dev
fortuertiger.pages.dev
linkp4d.pages.dev
linkslot88a.pages.dev
slotpgs8.pages.dev
markasjudi.pages.dev
saldo69.pages.dev
slotbenua.pages.dev
saingtoto.pages.dev
markastoto77.pages.dev
jowototo88.pages.dev
sungli78.pages.dev
volatilitas78.pages.dev
bonusbuy12.pages.dev
slotoffiline.pages.dev
dihindari77.pages.dev
rtpdislot1.pages.dev
agtslot77.pages.dev
congtoto15.pages.dev
hongkongtoto7.pages.dev
sinarmas177.pages.dev
hours771.pages.dev
sarana771.pages.dev
kananslot7.pages.dev
balitoto17.pages.dev
jowototo17.pages.dev
aromatotoding.com
unyagh.org
fairparkcounseling.com/gap/
impress-newtex.com/ajax/
SULTAN88
SULTANSLOT
RAJA328
JOIN88+
HOKIBET
GFC88
RusiaSlot88
Tahu69
BONANZA99
Pragmabet
mega55
luxury777
luxury333
borju89
qqgaming
KEDAI168
mega777
nagaslot777
TAKSU787
kkslot777
MAS77TOTO
BANDAR55+
BOS303
Login-HOKI99/
NUSA365
YUHUSLOT
ktp168
GALAXY138